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Quantum Kinematic Theory of the PoincareÂGroup
in Two-Dimensional Spacetime
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Non-Abelian quantum kinematics is applied to the PoincareÂgroup 3 -
1 (1, 1), as

an example of the quantization-th rough-the-symmetry approach to quantum
mechanics. Upon quantizing the group, generalized Heisenberg commutation
relations are obtained, and a closed Heisenberg ±Weyl algebra follows. Then,
according to the general theory, the three basic quantum-kinem atic invariant
operators are calculated; these afford the superselection rules for diagonalizing
the incoherent rigged Hilbert space *Ä (3 -

1 ) of the regular representation. This
paper examines only one of these diagonalization schemes, while introducing a
irreducible spacetime representation carried by isotopic plane-wave eigenvectors
of two compatible superselection operators (which define a PoincareÂ-invariant
linear 2-momentum). Thereafter, the principle of microcausality produces massive
2-spinor isotopic states in 1 1 1 Minkowski space. The Dirac equation is thus
deduced within the quantum kinematic formalism, and the familiar Jordan ±Pauli
propagation kernel in 2-dimensional spacetime is also obtained as a Hurwitz
invariant integral over the group manifold. The main interest of this approach
lies in the adopted group-quantization technique, which is a strictly deductive
method and uses exclusively the assumed PoincareÂsymmetry.

1. INTRODUCTION

This paper deals with some irreducible representations of the PoincareÂ

group 3 -
1 (1, 1). Since this matter settles a rather old issue, on first sight the

subject of this paper may well seem obsolete (Wigner, 1939; Bargmann and

Wigner, 1946). However, relativistic symmetry will be considered here under

a new (somehow heterodox) quantum perspective, in which we shall tighten
the twining of quantum mechanics with the theory of special relativity. Quite

generally, through the chosen example, we hope to convince the reader that

there is still more to be said about the role of symmetry in quantum physics.
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The present work addresses the problem of quantizing the group of

inhomogeneous proper Lorentz transformations in 2-dimensional Minkowski

spacetime. With no pretension toward rigor, suffice it to say that by `quantizing
a Lie group’ we mean that one associates with the parameter qa of the group

a complete set of commuting Hermitian operators Qa (i.e., qa ® Qa), which

behave as generalized position operators on the group manifold, for they

have the parameters for spectra. This is the starting idea of non-Abelian
quantum kinematics, as it has been introduced in the literature over the recent

years. A general discussion of the issues involved in this formalism is given
in Krause (1994a); a recent heuristic interpretation of the quantum kinematic

approach to dynamics can be found in Krause (1997a). [To avoid confusion,

let us here remark that Lie group quantization is a mathematical formalism

bearing no relation whatever with the formalism of so-called `quantum

groups’ now in vogue. See, for instance, Pillin (1994). As is well known,

`quantum groups’ are not groups. They are `q-deformed Lie algebras’ , becom-
ing Hopf algebras. For a very lucid exposition of the subject of `quantum

groups’ see Biedenharn and Lohe (1995).]

The group-theore tic position operators and the non-Abelian momentum
operators (afforded by the generators of the regular representation) satisfy

well-defined generalized Heisenberg commutation relations (Krause, 1985).
As we have shown in our previous work, together with the non-Abelian

Lie algebra and the adjoint representation of the group, the new kinematic

commutation relations lead to a closed generalized Heisenberg ± Weyl algebra
(Krause, 1991), as well as to a generalized enveloping algebra (Krause,

1993a) associated with the quantized group. These new structures are general-
izations of the old structure indeed, for they extend to non-Abelian Lie groups
the traditional Heisenberg±Weyl structure stemming from the Abelian group
of rigid space transport in a Cartesian scaffolding, on which canonical quanti-
zation has been resting hitherto (Weyl, 1931; Komar, 1971). As a matter of

fact, in non-Abelian quantum kinematic theory, quantization becomes a pre-

cise, consistent, systematic, and general group-theore tic procedure, able to

yield new kinematic foundations for quantum dynamics (Krause, 1994a). In
this sense, we claim that the old notion of `quantization’ should lose its

`philosophical flavor ’ as historically related with a kind of mysterious, meta-

physical connection between quantum theory and some thoroughly ad hoc

classical analog theories (Jammer, 1989), for which the Ehrenfest theorem

is too narrow an argument for the old principle of correspondence. In fact,

from a strictly physical point of view, one has to admit that most relevant
quantum systems known today have no classical analog at all.

Moreover, the actual interest of a geometric generalization of the notion

of `quantization’ is not purely philosophical or academic. Indeed, it has been

found that quantization of an r-dimensional Lie group produces a set of r
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basic quantum kinematic invariant operators. These are functions of the

generators (and of the position operators) that commute with all the genera-

tors; they may be calculated in a standard manner (Krause, 1991) and, further-

more, all the invariants of the group (including the traditional ones, such as

the Casimir operators, for instance) are functions thereof (Krause, 1993a).

Hence, the kinematic invariant operators yield the several superselection rule

schemes of the theory, by means of which physically meaningful irreducible

representations can be introduced. Very especially, such irreducible represen-

tations can be defined in configuration spacetime (as a homogeneous space

for the action of the group), in terms of wave functions that satisfy a set of

invariant wave equations (containing the SchroÈ dinger equation, if any), the

form of which one deduces quite generally from the chosen superselection

rules (Krause, 1994a). In this manner, the most striking achievement of non-

Abelian quantum kinematics is that this theory produces the propagation

kernel of a system as the transition amplitudes between such irreducible

configuration states, which are given by a Hurwitz invariant integral defined

over the group manifold. To sum up, the irreducible configuration representa-

tions describe a quantum model of a system that remains invariant under the

action of the group. These are the main features which enhance the quantized

group with a rich mathematical structure, and offer huge possibilities of new

applications for Lie groups in quantum theory.

For a successful application of the main formal structure of quantum

kinematic theory, see Krause (1996), where the SchroÈ dinger equation and

the Feynman propagation kernel are deduced in a strict group-theore tic man-

ner, for the Landau group characterizing a point charge moving in a constant

magnetic field. [The concept of the complete symmetry group of a mechanical

system plays here a central role. This concept has been introduced recently

in the literature, for the classical Kepler problem (Krause, 1994b).] Early

successful models of group quantization can be found in Krause (1986, 1988)

for the simple harmonic oscillator and for a Galilean free particle, respectively.

In those years, however, the theory of the quantum kinematic superselection

rules was missing, and the author was not aware of the general formalism

of quantum kinematic theory. Nevertheless, neither canonical quantization

nor path integral methods were used in these early references.

It is the intention of this paper to adopt this group-theore tic quantization

method in order to initiate a study of quantum kinematic models describing

PoincareÂ-invariant elementary systems in a two-dimensional world. Let us

here underline the introductory character of this article, since the endeavor

developed in the sequel is by no means complete. Here we touch only on

some basic kinematic features of the resulting toy models of 2-dimensional

massive free fermions. Bosons, internal structure, and possible dynamics for
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such systems, as predicted by the quantum kinematic analysis of 3(1, 1),

will be considered in forthcoming papers.

The organization of this paper follows the standard formalism of quantum
kinematics. In Section 2 we quantize 3 -

1 (1, 1), obtaining the generalized

Heisenberg commutation relations, as well as the closed Heisenberg±Weyl

quantum kinematic algebra. (Other useful commutation relations are also

considered in this section, for future reference.) Section 3 is a brief study of

the relativistic quantum-kinematic invariant operators. Here we discuss the

superselection rules, in the light of the heuristic postulates of the theory.
Next, in Section 4 we introduce a spacetime representation of the PoincareÂ

group within the rigged Hilbert space that carries the regular representation.

Thus we get isotopic plane wave states which satisfy a maximal set of

two compatible superselection rules, whose `wave vector ’ corresponds to an

isotopic (i.e., internal) linear 2-momentum yielding a proper mass. (Massless

states are not considered in this paper.) Noncausal propagation kernels are
obtained, however, from the transition amplitudes of these basic spacetime

vectors. Therefore, in Section 5 we adopt the principle of microscopic causal-
ity, which brings in massive 2-spinors , transforming appropriately under

PoincareÂtransformations in Minkowski spacetime. They obey automatically

(that is, by construction) the Dirac equation (which is thus deduced in the
present theory). Moreover, the transition amplitudes of these causal spacetime

vectors yield precisely the Jordan ± Pauli propagator function in 1 1 1 dimen-

sions, which is here given by a Hurwitz invariant integral over the group

manifold, as expected. Some features of the quantum kinematic theory of the

massive free-fermion causal propagator are briefly discussed in this section.

Finally, in Section 6 we present our concluding remarks and some perspectives
for future work.

This paper includes two appendices: Appendix A revisits some special

features of PoincareÂtransformations in 1 1 1 dimensions. Appendix B is

devoted to the regular representation of 3 -
1 (1, 1). These appendices summa-

rize the required prolegomena for understanding this paper.

2. 3 -
1 (1, 1) QUANTUM KINEMATICS

We first proceed to quantize the PoincareÂgroup in 1 1 1 dimensions,
according to the general formalism developed in our previous work. As

we have already noted, this leads to generalized Heisenberg commutation

relations, which produce the associated Heisenberg±Weyl quantum kine-

matic algebra.

2.1. Generalized Heisenberg Commutation Relations

The best (if not the only) way of achieving group quantization is within

the rigged Hilbert space *Ä (3 -
1 ) that carries the regular representation (cf.
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Appendix B). So, let us define generalized position operators of the group

manifold M(3 -
1 ) by means of the following spectral integrals:

Qa 5 m 0 # # dq0 dq1 #
1

2 1

dq2 g 2(q2) | q0, q1, q1 & qa ^ q0, q1, q2 | (2.1)

for a 5 0, 1, 2. Here we have used the invariant measure given in equation

(B.1), and we have taken into account the resolution of the identity stated
in equation (B.3). Therefore, as a consequence of equation (B.4), one has

Qa | q & 5 qa | q & and [Qa, Qb] 5 0. Hence, the Q ’ s provide a complete set of

commuting Hermitian operators in *Ä (3 -
1 ).

It is interesting to consider the active transformation law which brings

the position operators Qa from the `SchroÈ dinger picture’ into the `Heisenberg

picture’ of the kinematics; namely, one defines parameter-dependent opera-
tors QÃa(q) 5 U ² (q)QaU(q), where U(q) denotes the unitary operators of

the representation (Krause, 1985). In this fashion, one notes that the

generalized position operators transform covariantly upon the group law.

In fact, according to equations (A.3) and (2.1), we obtain the `left’

transformation law:

U
²
L(q)Q0(UL(q) 5 q0 1 g (q2)(Q0 2 q2Q1)

U
²
L(q)Q1UL(q) 5 q1 1 g (q2)(Q1 2 q2Q0) (2.2)

U
²
L(q)Q2UL(q) 5 (q2 1 Q2)(1 1 q2Q2) 2 1

as well as the `right’ transformation law, which reads

U
²
R(q)Q0UR(q) 5 Q0 1 g (Q2)(q0 2 Q2q1)

U
²
R(q)Q1UR(q) 5 Q1 1 g (Q2)(q1 2 Q2q0) (2.3)

U
²
R(q)Q2UR(q) 5 (Q2 1 q2)(I 1 Q2q2) 2 1

We then evaluate these transformations in a small neighborhood of the identity,

and thus we obtain generalized Heisenberg commutation relations obeyed

by the position operators and the non-Abelian generators of the regular

representation. In the present case, one gets [cf. equation (A.5)]

[Q0,L0] 5 i " , [Q1, L0] 5 0, [Q2, L0] 5 0

[Q0,L1] 5 0, [Q1,L1] 5 i " , [Q2, L1] 5 0

[Q1,L2] 5 2 i " Q1, [Q1,L2] 5 2 i " Q0, [Q2,L2] 5 i " g 2 2(Q2)

(2.4a)
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and

[Q0, R0] 5 i " g (Q2), [Q1, R0] 5 2 i " g (Q2)Q2, [Q2, R0] 5 0

[Q2, R1] 5 2 i " g (Q2)Q2, [Q1, R1] 5 i " g (Q2), [Q2, R1] 5 0

[Q0, R2] 5 0, [Q1, R2] 5 0, [Q2, R2] 5 i " g 2 2(Q2)

(2.4b)

This is the point where the quantum principle begins to emerge from the

classical theory of 3 -
1 (1, 1). Notice that these commutation relations are not

all canonical (neither do they close to form a finite algebra).
Let us here remark that the mathematical importance of quantum kine-

matics stems from the fact that the sets {Q0, Q1, Q2; L0, L1, L2} and [Q0, Q1,

Q2; R0, R1, R2} [and not just the set of generators {L0, L1, L2}, nor {R0, R1,

R2}] are the irreducible sets of Hermitian operators that characterize the

carrier Hilbert space *Ä (3 -
1 ) defined by the group structure of 3 -

1 (1, 1) itself.

[For this notion, see for instance, Fonda and Ghirardi (1970).]
In this manner, we have arrived at one of the most important results

of non-Abelian Lie group quantization, which points beyond the canonical

quantization formalism. Certainly, such generalized commutation relations

are of potential value for physics. We next explore some of their consequences.

2.2. Heisenberg ± Weyl Quantum Kinematic Algebra

One obtains a closed quantum kinematic algebra associated with

3 -
1 (1, 1), as follows. Using some general properties of the adjoint representa-

tion [see Eq. (A.7)] yields the following commutation relations (Krause,

1991):

[Ac
b(Q), La] 5 i " f d

ab Ac
d(Q), [Ac

b(Q), Ra] 5 i " f c
ad Ad

b(Q) (2.5)

One interprets equations (2.5), together with the Lie algebra stated in equations
(B.15) and the fact that [Ab

a(Q), Ad
c(Q)] [ 0, as the generalized Heisenberg ±

Weyl algebra of the quantized group.

The closed commutation relations (2.5) are very helpful in order to

analyze the nonclosed Heisenberg commutation relations (2.4). For instance,

as miscellaneous examples, in the case of 3 -
1 (1, 1), equations (2.5) yield

[ g (Q2)(Q0 1 Q2Q1), R0] 5 i " , [ g (Q2)(Q1 1 Q2Q0), R1] 5 i " (2.6a)

[ g (Q2)(Q1 1 Q2Q0), R0] 5 0, [ g (Q2)(Q0 1 Q2Q1), R1] 5 0 (2.2b)

as well as

[ g (Q2)(I 6 Q2), R2] 5 6 i " g (Q2)(I 6 Q2) (2.7)
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and

[ g (Q2)(Q0 6 Q2Q2), R2] 5 6 i " g (Q2)(Q1 6 Q2Q0) (2.8a)

[ g (Q2)(Q1 6 Q2Q0), R2] 5 6 i " g (Q2)(Q0 6 Q2Q1) (2.8b)

(Of course, one can also obtain these commutators directly, by inspection of

the generalized Heisenberg commutation relations, but the calculations are

not so simple.)

These results are not just minutiae, for they all play important roles in

the present theory. Very especially, observe that in this fashion one gets,
besides [Q m , L n ] 5 i " d m

n , as appears in equations (2.4a), the following canoni-
cal commutation relations:

[QÅ m , R n ] 5 2 i " d m
n (2.9)

which do not appear in (2.4b). Here we have defined the operators QÅ m using
the inversion law of the parameters, given in equation (A.4), i.e., we define

QÅ 0 5 2 g (Q2)(Q0 1 Q2Q1), QÅ 1 5 2 g (Q2)(Q1 1 Q2Q0), QÅ 2 5 2 Q2

(2.10)

This means that QÅ m | q & 5 qÅ m | q & and QÅ m | qÅ & 5 q m | qÅ & hold. Within the left

regular representation, the kinematic law for the inverse-position operators
reads

U
²
L(q)QÅ m UL(q) 5 QÅ m 1 L Å m

n (Q
2)qÅ n (2.11)

As we see, the real interest of the new position operators QÅ m is that they are

Lorentz invariant Hermitian operators [since, plainly, q m 5 0 Þ qÅ m 5 0].

The following transformation law is also worth noting:

U
²
L(q) g (Q2)(I 6 Q2)UL(q) 5 g (q2)(1 6 q2) g (Q2)(I 6 Q2) (2.12)

for it will play a role in the sequel.

We have presented these matters here in order to show the formal
possibilities offered by the quantum kinematic treatment of the group, and

also for future reference.

3. QUANTUM KINEMATIC SUPERSELECTION RULES

Henceforth we adopt the left regular representation of 3 -
1 (1, 1) (cf.

Appendix B) as the underlying working frame of the theory. We now proceed

to study the set of basic quantum kinematic invariant operators of the group,

from which the superselection rules of the theory are obtained.

3.1. Quantum Kinematic Invariant Operators

It is well known that the Lie algebra (B.15) associated with 3 -
1 (1, 1)

has just one Casimir operator, which is given by the scalar operator
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W 5 h m n L m L n [ h m n R m R n (3.1)

where h m n 5 h m n 5 diag( 1 2 ) is the Minkowski metric. According to the
traditional approach to this subject, this operator yields the 2-dimensional

Klein±Gordon equation, related with the only superselection rule available

in *Ä (3 -
1 ). However, the realm of quantum kinematics is much broader than

the traditional standpoint, for according to this perspective one obtains more

superselection rules than in the traditional theory of Lie algebras. In fact,
one has a larger quantum kinematic Heisenberg±Weyl algebra, and therefore

new invariant operators follow as linear combinations of the generators,

whose matrix coefficients belong to the anti-adjoint representation [given

by the inverse matrix of the one defined in equation (A.10)] considered as

functions of the generalized position operators, as we shall see presently.

As another important application of the quantum kinematic algebra (2.5),
let us here recall some features leading to the theory of the basic quantum
kinematic invariants of the group (Krause, 1991). Within the left regular

representation the basic invariants are given by the general formula

Ra(Q; L) 5 R ²
a(Q; L) 5 AÅ b

a(Q)Lb (3.2)

Indeed, [AÅ b
a(Q), Lb] 5 i " f b

ab 5 0 follows for 3 -
1 (1, 1)], and, clearly, from

equations (B.14), one gets

U
²
L(q)Ra(Q; L)UL(q) 5 Ra(Q; L) (3.3)

Hence, these are the desired invariant operators. In the `Q-representation’ of

quantum kinematics, it is an easy matter to obtain Ra(Q; L) | q & 5 i " Ya(q) | q & ,
and thus one identifies these operators as the generators of the right regular
representation, acting as invariant operators within the left regular representa-

tion of 3 -
1 (1, 1) [cf. equation (B.16)]. Bear in mind that this can be achieved

if, and only if, one quantizes the group.

In the case of 3 -
1 (1, 1), the formalism sketched above becomes rather

simple. Substituting from equations (A.7) into equation (3.2) yields the follow-
ing three basic invariants of the PoincareÂgroup in 1 1 1 dimensions:

R0(Q; L) 5 g (Q2)(L0 2 Q2L1) (3.4a)

R1(Q; L) 5 g (Q2)(L1 2 Q2L0) (3.4b)

R2(Q; L) 5 Q1L0 1 Q0L1 1 L2 (3.4c)

These operators are Hermitian. They are not all compatible, however, for
they satisfy the right Lie algebra (B.15a). We see that the right-displacement-

generators R m 5 R m (Q; L) are given by a quantized Lorentz transformation

of the left-displacement generators L m ; i.e., equations (3.4a) and (3.4b) read

R m 5 L n
m (Q2)L n . On the other hand, as we see from equation (3.4c), the
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right-boost-generator R1 5 R2(Q; L) corresponds to a total pseudo-Euclidean
angular momentum operator related to hyperbolic Lorentz rotations in 2-

dimensional flat spacetime. Note that, in this theory, L m is the genuine linear
momentum operator and L2 is the genuine hyperbolic angular momentum
operator (cf. below).

3.2. Superselection Rules: Heuristic Postulates

At this point, we are ready to consider the quantum kinematic superselec-
tion rules. The statement ª 3 -

1 (1, 1) is a symmetry group of a physical systemº

means that this group acts on the manifold of the physical states of the

system, transforming one physical state into another. Moreover, it also means
that the action of the group does not change the dynamical structure of the

system. Hence, any reasonable physical interpretation of a quantum kinematic

model based on 3 -
1 (1, 1) must assume the following heuristic postulate:

The allowable physical pure states of a system correspond to simultaneous
eigenvectors in *Ä (3 -

1 ) of a maximal set of compatible quantum kinematic
Hermitian invariant operators of the group.

This means that every maximal set of compatible invariant operators

yields a set of superselection rules, by means of which the incoherent Hilbert

space *Ä (3 -
1 ) can be diagonalized into invariant Hilbert subspaces, each

carrying an irreducible physical representation of the group (namely, a model
of the system).

On the other hand, concerning the properties that characterize the dynam-

ical structure of the system, one should also consider the following postulate:

The eigenvalues of the operators pertaining to a maximal set of superse-
lection rules correspond to some intrinsic physical properties characterizing
the structure of the system.

The eigenvalues of the quantum kinematic superselection rule operators are

the labels characterizing the respective invariant Hilbert spaces which carry
the quantum model of a system. The second heuristic postulate enhances

some features of the right regular representation with the character of an

isotopic structure, describing some properties of the permanent internal nature

of the system. [Recall that in these interpretations one assumes the left regular

representation as the adopted working frame (Krause, 1994a, 1997a).]

Now, according to these postulates, one can diagonalize the quantum
kinematic structure of the PoincareÂgroup 3 -

1 (1, 1) in one of the following

schemes: either one uses the compatibility conditions (a) [R0, R1] 5 0, (b)

[W, R2] 5 0, (c) [W, R0] 5 0, or else one uses (d) [W, R1] 5 0. Solving for

the eigenvalue problems of the corresponding compatible invariant operators
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reduces the left regular representation into irreducible representations, which

one hopes to interpret properly. In this sense, the quantum kinematic theory

of 3 -
1 (1, 1) is automatically relativistic invariant.
In the sequel we only consider models that arise from the first maximal

set of superselection operators {R0, R1}. As we shall see presently, this set

produces the theory of the Dirac equation of massive free fermions in 1 1 1

dimensions as a very special consequence. Quantum kinematic models stem-

ming from the remaining superselection rules [i.e., {W, R2}, {W, R0}, and

{W, R1}] will be considered elsewhere.

4. SPACETIME REPRESENTATIONS

As follows from the previous discussion, what is still missing in this

approach is a spacetime description of the quantum kinematic models in
terms of wave functions evolving in spacetime according to well-defined

wave equations. We shall here attain such a description, in accord with the

geometric demands of special relativity.

4.1. Geometric Representations

To this end, we first consider a kind of vector | x & 5 | x0, x1 & P
*Ä (3 -

1 ) which maintains a one-to-one correspondence with the events x 5
(x0, x1), and is such that, by construction, one has

UL(q
0, q1, q2) | x0, x1 & 5 | g (q2)(x0 2 q2x1)

1 q0, g (q2)(x1 2 q2x0) 1 q1 & (4.1)

for all q and x. These vectors carry a geometric representation of the spacetime

realization of 3 -
1 (1, 1) given in equations (A.1). In fact, the property stated

in (4.1) entails the following transformation law for wave functions c (x) 5
^ x | c & [with | c & P *(3 -

1 )] defined on the spacetime arena:

^ x | U ²
L(q) | c & 5 c [ L m

n (q
2)x n 1 q m ] 5 c qÄ (x) (4.2)

One has enormous freedom for building such geometric representations
within *Ä (3 -

1 ). Indeed, it can be shown that a necessary and sufficient condi-

tion for the vectors | x & to be endowed with property (4.1) is that they have

the following general form:

| x; j & 5 # d m (q) j *[ L m
n (qÅ

2)(x n 2 q n )] | q & (4.3)

where the generating wave function j (x) remains arbitrary. Hence, in order

to obtain a specific model, j (x) must be determined on some physical grounds

(Krause, 1994a).
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Before tackling this problem, let us also observe that an infinitesimal

PoincareÂtransformation of | x; j & yields the usual spacetime realization of

the left-displacement generators (i.e., 2-momentum operators):

L0 | x; j & 5 i*( - / - x0) | x; j & , L1 | x; j & 5 i " ( - / - x1) | x; j & (4.4a)

while for the left-Lorentz-boost generator one obtains

L2 | x; j & 5 2 i " [x1( - / - x0) 1 x0( - / - x1)] | x; j & (4.4b)

We do not consider central ray extensions [by U(1)] of the 1 1 1

PoincareÂgroup in this paper. This subject will be studied elsewhere. The

extension of the formalism of non-Abelian quantum kinematics, from `true’
(i.e., vector) representations to `projective’ ray representations, faces no diffi-

culties (Krause, 1994a). Irreducible projective representations of 3 -
1 (1, 1)

have been found recently by Bose (1996) as an application of the Kirillov

theory.

4.2. Isotopic Linear Momenta

Bearing in mind the basic postulates of the theory, let us examine the
superselection rules arising from the right-displacement generators. That is,

we require very specific spacetime kets which may be realizable states of

the system. So, we look for a special generating function j (x; r ) that satisfies

the superselection rules:

R0 | x; r ; j & 5 r 0 | x; r ; j & , R1 | x; r ; j & 5 r 1 | x; r ; j & (4.5)

The solution of this problem yields the desired isotopic plane waves, which

have the general form

| x; r ; j & 5 j ( r ) | x; r & (4.6)

Here j ( r ) is an arbitrary amplitude, and | x; r & are basic spacetime kets given by

| x; r & 5 # d m (q) exp F 2
i

"
L m

n (qÅ
2)(x n 2 q n ) r m G | q & (4.7)

Furthermore , one has the following transformation law for these basic space-
time vectors:

UL(q) | x; r & 5 | x8; r & (4.8)

where, clearly, x8 m 5 L m
n (q

2)x n 1 q m , while the eigenvalues r m remain

invariant. This fact bears no relation to Wigner ’ s `little group’ approach,

since equation (4.8) is valid for all the representative elements UL(q) of the

group (Wigner, 1939; also see Kim and Wigner, 1990).
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PoincareÂinvariance of r m holds under the action of the whole group

because R0 and R1 are invariant operators. Thus, one cannot consider the

eigenvalues r m as playing the role of the linear 2-momentum vector of a
system. They represent two invariant (i.e., internal ) properties of the system.

We thus briefly refer to r m as the isotopic linear 2-momentum . This feature

is peculiar to the present theory. In analogy with the familiar notion of

an isotopic angular momentum , relativistic quantum kinematics (in 1 1 1

dimensions) affords an isotopic linear momentum , which is an invariant

quantity characterizing the elementary systems of the model.
Of course, within the left regular representation of 3 -

1 (1, 1), the compo-

nents of the linear 2-momentum vector p m are the eigenvalues of the left

generators L m . In this manner, one obtains ordinary plane waves, of the

standard Fourier form, which transform in a well-defined manner under the

unitary left-operators of the group. Both kind of plane waves (i.e., isotopic

and ordinary plane waves) satisfy the eigenvalue equation of the Casimir
operator W [cf. equation (3.1)].

We write r m r m 5 6 m2c2 without loss of generality, because the invariant

momenta admit the whole isotopic 2-momentum space for spectra. In this

space, one has four kinds of mass shells. It is useful to denote them as follows:

(a) m(1), when r 0 . 0 and 2 ` , r 1 , 1 ` .
(b) m(2), when r 0 , 0 and 2 ` , r 1 , 1 ` .

(c) m(3), when 2 ` , r 0 , 1 ` and r 1 . 0.

(d) m(4), when 2 ` , r 0 , 1 ` and r 1 , 0.

Briefly, we write r P m( l ), l 5 1, 2, 3, 4, to denote the kind of mass shell

attached to the isotopic r m . In the sequel we assume m Þ 0, and we take
m . 0. (The massless case m 5 0 deserves a special discussion and shall be

considered elsewhere.) It is also useful to define the following `index’ : k l 5
1 for l 5 1, 2 (`real’ r -states) and k l 5 2 1 for l 5 3, 4 (`virtual’ r -states).

4.3. Extremely Singular Plane Waves

Notwithstanding these features, we can identify the notions of isotopic
proper mass (as obtained from r m ) and physical proper mass (as obtained

from p m ). To strengthen this identification, besides the argument based on W
already mentioned, let us recall that [L m , R n ] 5 0, and hence we may solve

for the simultaneous eigenvalue problem of these operators. The solution is

given by extremely singular plane waves | x; r ; p & which are defined within

an arbitrary finite amplitude c 5 c ( r ; p), as the reader may convince herself
or himself. The transformation law of these plane waves reads UL(q) | x; r ;

p & 5 | x8; r ; p8 & , where x8 m 5 L m
n (q

2)x n 1 q m , p8m 5 L n
m (qÅ 2)p n , and r 8m 5 r m ,

as expected. These singular states satisfy the following orthogonal transi-

tion amplitudes:
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^ x; r ; p | x8; r 8; p8 &

5 exp F i

"
(x8 m 2 x m )p m G

3 d (2)( r 8 2 r ) d (2)( p8 2 p) d ( r m r m 2 p m p m ) u [( r 0 1 r 1)( p0 1 p1)]

3 u [( r 0 2 r 1)( p0 2 p1)] (4.9)

where u denotes the step function, u (x) 5 0 for x , 0 and u (x 5 1 for x .
0. Owing to the presence of the step functions in equation (4.9), we see that

these transition amplitudes are identically zero if r m and p m belong to different

kinds of mass shell. (Tis is so even if r m r m 5 p m p m coincide.) So for these
states the following constraint holds implicitly:

r m r m 5 p m p m 5 6 m2c2 (4.10)

and, furthermore, r m and p m must belong to the same kind of mass shell.

(This is not to say that r m 5 p m , necessarily.)
One gets back the isotopic plane waves (4.6) as superpositions of the

singular plane waves in p-space. The wavepacket integrals over p-space

actually maintain the identification stated in equation (4.10). We shall not

further consider these extremely singular states in this paper. The spacetime

vectors given in equations (4.7) (which are defined up to an arbitrary ampli-

tude) are the basic eigenkets for building allowable physical states of elemen-
tary systems.

4.4. Isotopic Plane-Wave Propagation Kernel

The transition amplitudes for the basic spacetime vectors (4.7) are given
by the following brackets:

^ x; r | x8; r 8 & 5 d (2)( r 2 r 8)K(0)(x 2 x8; r ) (4.11)

as one obtains from evaluating the corresponding Hurwitz invariant integral.

To this end, we set the normalization constant m 0 5 (2 p " ) 2 2 (see Appendix

B), and therefore the kernel K(0) is given by

K(0)(x; r ) 5 #
1

2 1

dq2 g 2(q2) exp H i

"
g (q2)[( r 0 1 q2 r 1)x

0 1 ( r 1 1 q2 r 0)x
1] J

5 #
`

0

du

u
exp H i

2 "
[( r 0 1 r 1)(x

0 1 x1)u 1 ( r 0 2 r 1)(x
0 2 x1)u 2 1] J

(4.12)

In this way we find the following transition amplitudes:
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(I) When ( r 0 1 r 1)( D x0 1 D x1) , 0 and ( r 0 2 r 1)( D x0 2 D x1) , 0,

one has

^ x; r | x8; r 8 & 5 2 i p d (2)( r 2 r 8)H (2)
0 [ " 2 1 ! ( r m r m )( D x n D x n )] (4.13a)

(II) Otherwise, one has

^ x; r | x8; r 8 & 5 i p d (2)( r 2 r 8)H (1)
0 [ " 2 1 ! ( r m r m )( D x n D x n )] (4.13b)

where D x 5 x8 2 x. Here H
( j )
0 denotes the respective Hankel function ( j 5

1, 2).
Hence we see that, as a consequence of the superselection rules, the

rigged Hilbert space *Ä (3 -
1 ) acquires an incoherent structure, since it becomes

diagonalized into a continuous system of invariant Hilbert subspaces * r .

Each * r carries an irreducible representation of 3 -
1 (1, 1), labeled by r m , and

corresponds to a coherent Hilbert subspace in which the superposition princi-

ple (for a fixed value of r m ) holds. We also notice the `regularization’ of the
theory, as shown by the presence of d (2)( r 8 2 r ) in equations (4.13), which

stems from the superselection rules.

5. MASSIVE 2-SPINORS: THE DIRAC EQUATION

As we see from equations (4.13), the transition amplitudes ^ x; r | x8; r 8 &
fail to be identically zero when x 2 x8 is spacelike, even if r m r m . 0. This

means that the basic vectors | x; r & do not satisfy microscopic causality. [In

the last analysis, this is due to the presence of the `cosine’ component in the

kernel K(0)(x; r ) defined in equation (4.12).] So we need to find basic spacetime

kets which are consistent with the principle of microscopic causality.

5.1. The Jordan ± Pauli Propagation Kernel

To find such causal spacetime vectors, we shall proceed as follows.

First, we decompose the kets | x; r & defined in equation (4.7) into its `cosine’
and `sine’ components. By this we mean the following definitions:

| x; r ; C & 5
1

2
| x; r & 1

1

2
| x; 2 r &

5 # d m (q) cos F 1

"
L m

n (qÅ
2)(x n 2 q n ) r m G | q & (5.1a)

| x; r ; S & 5
1

2
| x; r & 2

1

2
| x; 2 r &

5 2 i # d m (q) sin F 1

"
L m

n (qÅ
2)(x n 2 q n ) r m G | q & (5.1b)
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As a motivation for introducing these vectors, we note that since the isotopic

eigenvalues r m are invariants, both the `cosine’ and the `sine’ spacetime kets

carry a geometric representation:

UL(q) | x; r ; C & 5 | x8; r ; C & , UL(q) | x; r ; S & 5 | x8; r ; S & (5.2)

Moreover, we easily obtain the transition amplitudes between S-vectors and
C-vectors; namely, we get

^ x; r ; S | x8; r 8; C & 5
i

2
[ d (2)( r 2 r 8) 2 d (2)( r 1 r 8)]S(0)(x 2 x8; r ) (5.3a)

^ x; r ; C | x8; r 8; S & 5
i

2
[ d (2)( r 2 r 8) 1 r (2)( r 1 r 8)]S(0)(x 2 x8; r ) (5.3b)

where the new propagation kernel S(0) corresponds to

S(0)(x; r ) 5 #
`

2 `

dq3 sin H 1

2 "
[eq3

( r 0 1 r 1)(x
0 1 x1) 1 e 2 q3

( r 0 2 r 1)(x
0 2 x1)] J

5 #
`

0

du

u
sin H 1

2 "
[( r 0 1 r 1)(x

0 1 x1)u 1 ( r 0 2 r 1)(x
0 2 x1)/u] J

5 6 p u [( r m r m )(x n x n )]J0[(1/ " ) ! ( r m r m )(x n x n )] (5.4)

u denotes the step function, and J0 is the Bessel function of the first kind

(of order zero). When r m r m . 0, S(0)(x; r ) is precisely the Jordan ± Pauli
causal propagation function in 1 1 1 dimensions. As is well known, all the
propagators used in relativistic quantum theory [including the noncausal
ones, like D 1(x)] can be obtained by means of manipulations performed on

the causal Jordan±Pauli propagation function, which thus plays the funda-

mental role. (Within the present quantum kinematic perspective, this matter

will be further discussed in a forthcoming paper.)
A detailed discussion in spacetime of the ª 6 p º factor that figures in

equation (5.4) in connection with the four kinds of mass shells in r -space

leads to the following results:

1. For l 5 1, one gets ª 1 p º within the future light-cone (x0 . 0),

and ª 2 p º within the past light-cone (x0 , 0).

2. For l 5 2, one gets ª 2 p º within the future light-cone (x0 . 0),

and ª 1 p º within the past light-cone (x0 , 0).
3. For l 5 3 (outside the {x} light-cone), one gets ª 1 p º when x1 .

0, and ª 2 p º when x1 , 0.

4. For l 5 4 (outside the {x} light-cone), one gets ª 1 p º when x1 ,
0, and ª 2 p º when x1 . 0.
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Of course, in all the remaining cases [that is, when ( r m r m )(x n x n ) , 0], one

has S(0) [ 0.

5.2. The Dirac Equation Regained

The following properties of the S and C spacetime kets are immediate:

R0 | x; r ; S & 5 r 0 | x; r ; C & , R1 | x; r ; S & 5 r 1 | x; r ; C & (5.5a)

R0 | x; r ; C & 5 r 0 | x; r ; S & , R1 | x; r ; C & 5 r 1 | x; r ; S & (5.5b)

Using left-invariant light-cone momentum operators, R+ 5 R0 1 R1 and

R 2 5 R0 2 R1, these can be also written as

R+ | x; r ; S & 5 ( r 0 1 r 1) | x; r ; C & , R 2 | x; r ; C & 5 ( r 0 2 r 1) | x; r ; S & (5.6a)

R+ | x; r , C & 5 ( r 0 1 r 1) | x; r ; S & , R 2 | x; r ; S & 5 ( r 0 2 r 1) | x; r ; C & (5.6b)

[Both systems of equations in (5.6) are in fact equivalent.] So we see that

the microscopic causality condition produces new kinds of spacetime vectors,

which obey `crossed eigenvalue schemes’ aÂla Dirac. In the sequel we adopt
the `crossed scheme’ presented in equations (5.6a).

Since the linear momentum operators yield

L m | x; r ; S & 5 i " ( - / - x m ) | x; r ; S & , L m | x; r ; C & 5 i " ( - / - x m ) | x; r ; C &
(5.7)

and [recalling equations (3.4a) and (3.4b)] the expressions for the invariant
light-cone momentum operators are given by

R+ 5 g (Q2)(1 2 Q2)(L0 1 L1), R 2 5 g (Q2)(1 1 Q2)(L0 2 L1)

(5.8)

we are ready to build 2-component isotopic spinors which obey the Dirac
equation. In fact, equation (5.6a) can be cast in the forms

i " [( - / - x0) 1 ( - / - x1)]a l ( r ) g (Q2)(1 2 Q2) | x; r ; S & 5 mcb l ( r ) | x; r ; C & (5.9a)

i " [( - / - x0) 2 ( - / - x1)]b l ( r ) g (Q2)(1 1 Q2) | x; r ; C & 5 k l mca l ( r ) | x; r ; S & (5.9b)

without loss of generality, where the amplitudes a l ( r ) and b l ( r ) are arbitrary

c-numbers, provided they satisfy the constraints

( r 0 1 r 1)a l ( r ) 5 mcb l ( r ), ( r 0 2 r 1)b l ( r ) 5 k l mca l ( r ) (5.10)

These equations have nontrivial solutions on the mass shell [that is, whenever

r m r m 5 k l m
2c2]. On the other hand, off the mass shell, one has a l ( r ) [ 0

and b l ( r ) [ 0. At this point, one needs to recall that the isotopic plane waves

are defined within an amplitude j ( r ) [cf. equation (4.6)]. The same is true,
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sensu stricto, for the S and C spacetime kets defined in equations (5.1).

Introducing | S & ® a l | S & and | C & ® b l | C & in equations (5.5) leads rather

naturally to the `crossed eigenvalue scheme’ for the operators shown in
equations (5.9), provided the constraints (5.10) are satisfied. We omit the

details of this analysis.

Next, it is rather clear that in order to obtain well-defined wave equations

in spacetime we must get rid of the Q2 in equations (5.9). To this end, we

include the action of the boost operator Q2 in the definition of the basic

spacetime vectors themselves. So let us define new basic kets as follows:

| x; r ; ( 2 ) & 5 1 1 2 Q2

1 1 Q2 2
1/4

| x; r ; S & , | x; r ; ( 1 ) & 5 1 1 1 Q2

1 2 Q2 2
1/4

| x; r ; C &

(5.11)

In this fashion, we cast equations (5.9) in the typical form of two coupled

first-order partial differential equations, i.e., we obtain

i " [( - / - x0) 1 ( - / - x1)]a l ( r ) | x; r ; ( 2 ) & 5 mcb l ( r ) | x; r ; ( 1 ) & (5.12a)

i " [( - / - x0) 2 ( - / - x1)]b l ( r ) | x; r ; ( 1 ) & 5 k l mca l ( r ) | x; r ; ( 2 ) & (5.12b)

These correspond to the Dirac equation in 1 1 1 dimensions indeed (Rosen,

1969), in which mc . 0 now plays the role of an eigenvalue. We wish to

remark that equations (5.12) do not just arise as the ª most simpleº (or the

ª most elegantº ) way out of the ª Q2 impasseº manifested by equations (5.9).

A more detailed discussion shows that they actually arise as the unique way
out of that problem. In other words, equations (5.11) represent a sufficient
and necessary construct of the theory.

Furthermore, given their definition in (5.11) [and recalling equations

(2.12)], the transformation law for these spacetime kets, under the action of

the unitary operators of 3 -
1 (1, 1), reads

UL(q) | x; r ; ( 2 ) & 5 1 1 1 q2

1 2 q2 2
1/4

| x8; r ; ( 2 ) & (5.13a)

UL(q) | x; r ; ( 1 ) & 5 1 1 2 q2

1 1 q2 2
1/4

| x8; r ; ( 1 ) & (5.13b)

instead of equation (4.1). One recognizes these as precisely the transformation

law obeyed by the components of Dirac `2-spinors’ in 2-dimensional space-

time (Rosen, 1969). We also wish to underline here that, by construction,
these components of 2-spinor-vectors are general solutions to the Dirac
equations (5.12), for this means that these wave equations have been deduced
within the quantum kinematic theory, together with the causality demand of

the theory of special relativity.
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5.3. Some Features of Two-Fermion Transition Amplitudes

Let us finally examine the new basic transition amplitudes ^ x8; r 8; ( 6 ) | x;

r ; ( 6 ) & more closely. Certainly,

^ x; r ; ( 2 ) | x8; r 8; ( 1 ) & 5 ^ x; r ; S | x8; r 8; C & (5.14a)

^ x; r ; ( 1 ) | x8; r 8; ( 2 ) & 5 ^ x; r ; C | x8; r 8; S & (5.14b)

still hold, as given in equations (5.3). We then concentrate our attention on

the brackets:

^ x; r ; ( 2 ) | x8; r ; ( 2 ) & 5
i

2
[ d (2)( r 2 r 8) 2 d (2)( r 1 r 8)]S( 2 )(x 2 x8; r ) (5.15a)

^ x; r ; ( 1 ) | x8; r 8; ( 1 ) & 5
i

2
[ d (2)( r 2 r 8) 1 d (2)( r 1 r 8)]S( 1 )(x 2 x8; r ) (5.15b)

whose kernels are given by

S( 6 )(x; r ) 5 2 i #
`

2 `

dq3 e 6 q3
cos H 1

2 "
[eq3

( r 0 1 r 1)(x
0 1 x1)

1 e 2 q3
( r 0 2 r 1)(x

0 2 x1)] J (5.16)

These lead to the familiar result:

S( 2 )(x; r ) 5 2 i "
r 0 1 r 1

r m r m
[( - / - x0) 2 ( - / - x2)]S(0)(x; r ) (5.17a)

S( 1 )(x; r ) 5 2 i "
r 0 2 r 1

r m r m
[( - / - x0) 1 ( - / - x1)]S(0)(x; r ) (5.17b)

where S(0)(x; r ) has been defined in equation (5.4). From equation (5.4) the

well-known properties of S(0) follow immediately:

r m r m . 0 Þ lim
x0 ® 0

S(0)(x; r ) 5 0, r m r m , 0 Þ lim
x1 ® 0

S(0)(x; r ) 5 0

(5.18)

On the other hand, it can be shown after a few steps that

S( 6 )(x; r ) 5 S( 6 )( 2 x; r ) 5 S( 6 )(x; 2 r ) (5.19)

In fact, these kernels can be also written as follows:
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S( 2 )(x; r ) 5 2 i #
`

0

du

u2 cos H 1

2 " F ( r 0 1 r 1)(x
0 1 x1)u 1

( r 0 2 r 1)(x
0 2 x1)

u G J
(5.19a)

S( 1 )(x; r ) 5 2 i #
`

0

du cos H 1

2 " F ( r 0 1 r 1)(x
0 1 x1)u 1

( r 0 2 r 1)(x
0 2 x1)

u G J
(5.19b)

wherefrom a straightforward calculation yields another well-known basic

result:

lim
z0 ® 0

S( 6 )(x; r ) 5 2
2 p i "

r 0 1 r 1

d (x1) (5.20)

In this manner, quantum kinematics produces all the mathematical ingre-

dients needed for developing a 2-dimensional isotopic-spinor formalism
describing the quantum kinematic theory of free fermions in a 2-dimensional

flat spacetime. This theory will be examined in another paper.

6. CONCLUDING REMARKS AND PERSPECTIVES

Heuristic interest is attached to the Dirac equation in 1 1 1 dimensions

(Rosen, 1969). The fact that with non-Abelian quantum kinematics of the

PoincareÂgroup 3 -
1 (1, 1) one is able to deduce the Dirac equation, and the

Jordan ±Pauli propagation kernel, is very reassuring for the general purposes

of this new quantization scheme. Although the present analysis does not bear
on dynamical questions (as, for instance, in Krause, 1986, 1996), in order to

understand the real significance of this paper, it is very important to bear in

mind that here we have followed the general deductive procedure of quantum

kinematics, as developed in our previous work (Krause, 1994a, 1997a).

In fancy language, it could be said that this paper presents a kind of

group-theoret ic ª radiographyº of the kinematic structure of the free-particle
Dirac equation and its propagation kernel in 1 1 1 dimensions. Indeed, a

kind of self-contained origin of the structure of 2-spinors has come to the

fore as a necessary construct of the formalism. These well-known structures

become illuminated from a new perspective, which includes the most funda-

mental requirements of special relativity and quantum theory, melded into
just one consistent and general group-theore tic picture. [Certainly, ª there is

a pleasure in recognizing old things from a new point of viewº (Feynman).]

As a matter of fact, as we have already mentioned in the Introduction,

quantum kinematics affords a new group-theore tic method for obtaining the

propagation kernel of a system. The reader may have noticed that all the
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propagators calculated in this paper have been obtained by evaluating some

Hurwitz invariant integrals over the group manifold, which correspond to

transition probability amplitudes between allowable configuration states
obtained from the superselection rules. There may be problems (not touched

on in this paper) for which this new formulation can offer some distinctive

advantages.

The usefulness of quantum kinematic theory does not stop simply at

providing another method for deducing wave equations and their propagation

kernels. Quantum kinematics of the PoincareÂgroup in 1 1 1 dimensions
may afford interesting toy models of relativistic elementary quantum systems.

For instance, based on the introductory theory developed in this paper, one

could further study the Lorentz-invariant canonical commutation relations

[QÅ m , R n ] 5 2 i " d m
n , presented in equation (2.9), in order to obtain (say) a

Lorentz-invariant SU(2) algebra (in terms of aÃm and aÃ²m Lorentz-invariant

ladder operators), and then use | c & 5 | JM & P *(3 -
1 ) (with J 5 0, 1/2, 1,

3/2, . . . ; M 5 2 J, 2 J 1 1, . . . , J 2 1, J ) to produce the two wave-function

components of 2-spinors. In fact, there is room to choose | c & in a physically

interesting way, in order to obtain isotopic multiplets of 2-spinor states, and

then try to interpret them reasonably. Another instance of an intrinsic Lorentz-
invariant algebra that appears within the quantum kinematic theory of
3 -

1 (1, 1) is discussed in Krause (1993b). This is the algebra of the group

SU(1, 1), often used in particle physics, which also appears by itself as an

internal symmetry of Lorentz-invariant systems. Much remains to be done

on this most intriguing subject.

Isotopic 2-momentum r m is another mechanical curiosity of this theory,

whose actual physical meaning remains to be understood. Let us here only
add that if one quantizes the universal covering group of the full PoincareÂ

group in 4-dimensional spacetime, one implicitly quantizes the external SU(2)

symmetry group. Hence, owing to typical quantum kinematic features, this

brings an isotopic SU(2) algebra onto the scene (Krause, 1997b). Therefore,

besides the 4-dimensional isotopic linear momentum, an isotopic angular
momentum [producing internal SU(2) multiplets] must arise in the 4-dimen-
sional theory.

Also, the isotopic massless case and the meaning of `virtual’ 2-spinor

states, as well as the quantum kinematic theory of the Klein±Gordon equation

in 1 1 1 dimensions, are subjects which deserve special study. The present

2-dimensional theory can be extended in several ways indeed. It is quite

clear that one must not expect to answer all the pertinent questions (posed
by these toy models) by just ne stroke of luck. Rather, long and hard step-

by-step work will be needed to this end.

Nevertheless, there are several good reasons to expect that a complete

and unambiguous non-Abelian quantum theory is possible to achieve, as a
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direct group-theore tic generalization of the present quantum formalism, with-

out changing the heuristic rules of physical interpretation. Such an achieve-

ment could be a helpful theoretical tool in the realm of elementary particle
physics.

APPENDIX A. SOME FEATURES OF POINCAREÂ

TRANSFORMATIONS

Here we append some features of PoincareÂtransformations in 2-dimen-

sional spacetime. We develop this issue rather sketchily. The formulas pre-

sented in this appendix are quite familiar (most are elementary). However,

all of them are employed somewhere in this article. To avoid repetitions, it

seems advisable to have them at hand, as references for reading the paper.
We consider the transformation of variables x m 5 (x 0, x 1) ® x8 m 5

(x80, x81), given by x8 m 5 L m
n (q

2)x n 1 q m ; i.e.,

x80 5 g (q2)(x 0 2 q2x 1) 1 q0

(A.1)
x81 5 g (q2)(x 1 2 q2x 0) 1 q1

The q’ s are the parameters of the group. Here q m , m 5 0, 1, are rigid

displacements of the inertial Cartesian frame, and q2 is the Lorentz boost
parameter, and one defines g (q2) 5 [1 2 (q2)2] 2 1/2. The L m

n (q
2) denotes a

2 3 2 proper orthochronous Lorentz matrix. In the present parametrization,

the group manifold is given by

M(3 -
1 ) 5 { 2 ` , q0 , 1 ` , 2 ` , q1 , 1 ` , 2 1 , q2 , 1 1}

(A.2)

and the identity point is e 5 (0, 0, 0) P M(3 -
1 ). The group law reads

q90 5 g0(q8; q) 5 q80 1 g (q82)(q0 2 q82q1)

q91 5 g1(q8; q) 5 q81 1 g (q82)(q1 2 q82q0) (A.3)

q92 5 g2(q8; q) 5 (q82 1 q2)(1 1 q82q2) 2 1

and therefore the group inversion rule for these parameters follows:

qÅ 0 5 2 g (q2)(q0 1 q2q1), qÅ 1 5 2 g (q2)(q1 1 q2q0), qÅ 2 5 2 q2

(A.4)

The q’ s are real essential parameters and M(3 -
1 ) is a noncompact, connected

and simply connected, 3-dimensional space.

One defines (right and left) transport matrices in the group manifold,

which are given by Rb
a(q) 5 limq8 ® e - 8ag

b(q8; q) and Lb
a(q) 5 limq8 ® e - 8ag

b(q;

q8). Hence, one gets the following transport matrices in M(3 -
1 ):
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Rb
a(q) 5 3

1 0 0

0 1 0

2 q1 2 q0 g 2 2 4 , Lb
a(q) 5 3

g 2 g q2 0

2 g q2 g 0

0 0 g 2 2 4
(A.5)

(In these matrices ª aº labels the rows and ª bº labels the columns.) In quantum

kinematics one also needs the corresponding inverse transport matrices,
which one defines as follows: RÅ b

a(q) 5 limq8 ® q - 8ag
b(q8; qÅ ) and LÅ b

a(q) 5 limq8 ® q

- 8ag
b(qÅ ; q1). Thus

RÅ b
a(q) 5 3

1 0 0

0 1 0

g 2q1 g 2q0 g 2 4 , LÅ b
a(q) 5 3

g g q2 0

g q2 g 0

0 0 g 2 4 (A.6)

So one immediately obtains the adjoint representation, which is carried by

the matrices Ab
a(q) 5 Rc

a(q)LÅ b
c(q), i.e.,

Ab
a(q) 5 3

g g q2 0

g q2 g 0

qÅ 1 qÅ 0 1 4 (A.7)

from which one gets A(q) 5 det[Ab
a(q)] 5 R(q)LÅ (q) 5 1. Hence, 3 -

1 (1, 1) is

unimodular. All these matrices play important roles in quantum kinematics.
One next defines Lie (right and left) vector fields on M(3 -

1 ): Xa(q) 5
Rb

a(q) - b, Ya(q) 5 Lb
a(q) - b. So one obtains the operators

X0 5 - 0, X1 5 - 1, X2 5 2 q1 - 0 2 q0 - 1 1 g 2 2 - 2(A.8a)

Y0 5 g ( - 0 2 q2 - 1), Y1 5 g ( - 1 2 q2 - 2), Y2 5 g 2 2 - 2 (A.8b)

These satisfy the well known Lie algebra:

[X0, X1] 5 0, [X0, X2] 5 2 X1, [X1, X2] 5 2 X0 (A.9a)

[Y0, Y1] 5 0, [Y0, Y2] 5 Y1, [Y1, Y2] 5 Y0 (A.9b)

[Xa, Yb] 5 0, a, b 5 0, 1, 2 (A.9c)

Hence, the nonzero structure constants are f 1
20 5 f 0

21 5 1. This ends the
required formulary.

APPENDIX B. THE REGULAR REPRESENTATION OF 3 -
1

REVISITED

This appendix briefly reviews the formalism of the regular representa-

tion, since this formalism contains the core of quantum kinematic theory.
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The regular representation of Lie groups is a well-known subject that has

been amply studied by mathematicians (Naimark and Stern, 1982). The only

aim here (besides introducing some further notation) is to present a unified
formalism for the simultaneous description of both (the left and the right)
regular representations of 3 -

1 (1, 1). To this end, we shall stick to the standard

Dirac notation used in quantum mechanics (i.e., in terms of ª ketsº and ª brasº ).

This appendix is also a useful formulary at hand for reading this paper.

Let us then recall some features of both regular representations of

3 -
1 (1, 1). Since the group is unimodular [i.e., R(q) 5 L(q) 5 g 2 2 (cf. Appendix

A)], we define the Hurwitz measure in M(3 -
1 ):

d m (q) 5 m 0 g 2(q2) dq0 dq1 dq2 (B.1)

where m 0 is a normalization constant. [In this paper we set m 0 5 (2 p " ) 2 2.]

This measure is left- and right-invariant under the group law (A.3). We then

introduce the Hilbert space *(3 -
1 ) that carries the two regular representations

of the PoincareÂgroup in 1 1 1 dimensions. As is well known, this space is

given by the set of all complex functions c (q) 5 c (q0, q1, q2), defined on
the group manifold, which have a finite invariant norm:

^ c | c & 5 # d m (q) | c (q) | 2 , ` (B.2)

Thus, we better introduce the rigged Hilbert space *Ä (3 -
1 ) to handle this

subject. This space is endowed with a continuous complete orthogonal basis

{ | q & 5 | q0, q1, q2 & } which is consistent with the invariant measure (B.1);

namely, one has

m 0 # # dq0 dq1 #
1

2 1

dq2 g 2(q2) | q0, q1, q2 & ^ q0, q1, q2 | 5 I (B.3)

^ q80, q81, q82 | q0, q1, q2 & 5 m 2 1
0 g 2 2(q2) d (q80 2 q0)(q81 2 q1) d (q82 2 q2) (B.4)

where m 0 denotes an arbitrary constant of normalization. There is a one-to-

one correspondence indeed: | q & % q P M(3 -
1 ), and therefore for any given

vector | c & P *(3 -
1 ) one defines the wave function c (q) 5 ^ q | c & , which

satisfies (B.2). Conversely, given any function c (q) satisfying (B.2), one

defines the vector

| c & 5 # d m (q) c (q) | q & P *(3 -
1 ) (B.5)

as one does in ordinary quantum mechanics (that is, when one considers

Heisenberg’ s Abelian quantum kinematics of rigid Cartesian translations). In

this sense, the present construct is rather simple and looks quite familiar.
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However, it produces interesting novelties, wing mainly to the non-Abelian
structure of 3 -

1 (1, 1).

We next introduce the representative operators of 3 -
1 (1, 1) in *Ä (3 -

1 ),
in the following fashion:

UL(q) 5 # d m (q8) | g(q; q8) & ^ q8 | , UR(q) 5 # d m (q8) | g(q8; q) & ^ q8 |

(B.6)

where the group multiplication functions ga(q8q) are given in equations (A.3).

These operators satisfy the group property,

UL(q8)UL(q) 5 UL[g(q8; q)], UR(q8)UR(q) 5 UR[g(q; q8)] (B.7)

they are unitary,

U ²
L(q) 5 UL(qÅ ) 5 U 2 1

L (q), U ²
R(q) 5 UR(qÅ ) 5 U 2 1

R (q) (B.8)

[cf. equations (A.4)], and moreover, left- and right-operators commute:

UL(q8)UR(q) 5 UR(q)UL(q8) (B.9)

for all q8, q P M. Of course, they yield

UL(q) | q8 & 5 | g(q; q8) & , UR(q) | q8 & 5 | g(q8; q) & (B.10)

and therefore if one defines 3 -
1 -transformed vectors in *(3 -

1 ), namely

UL(q) | c & 5 | c (L)
q & , UR(q) | c & 5 | c (R)

q & (B.11)

one obtains the corresponding transformation laws for wave functions c (q)

defined on the group manifold. These read [cf. also equation (4.2)]:

c (L)
q (q8) 5 c [g(qÅ ; q8)], c (R)

q (q8) 5 c [g(q8; qÅ )] (B.12)

These formulas show neatly that we are handling the regular representations

of the group, for these are the basic definitions used in the current treatment

of this subject by mathematicians (Naimark and Stern, 1982). (We deem our
treatment as much simpler.)

The generators are defined in the neighborhood of the identity, say

UL( d q) 5 I 2 (i/ " ) d qaLa, UR( d q) 5 I 2 (i/ " ) d qaRa (B.13)

The kinematic of the generators is well known. They transform as vectors

of the adjoint representation:

U ²
L(q)LaUL(q) 5 Ab

a(q)Lb, U ²
R(q)RaUR(q) 5 Ab

a(qÅ )Rb (B.14)

which stem from equations (B.7). Of course, the Lie algebra obeyed by the
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generators is an immediate consequence of these results; thus we get [cf.

equations (A.9)]

[L0, L1] 5 0, [L0, L2] 5 i " L1, [L1, L2] 5 i " L0 (B.15a)

[R0, R1] 5 0, [R0, R2] 5 2 i " R1, [R1, R2] 5 2 i " R0 (B.15b)

Furthermore , equations (B.10) yield the following realizations of the genera-

tors when acting on the basic kets | q & of *Ä (3 -
1 ):

La | q & 5 i " Xa(q) | q & , Ra | q & 5 i " Ya(q) | q & (B.16)

Hence, using equations (A.8), we obtain explicitly

^ q | L0 | c & 5 2 i " - 0 c (q)

^ q | L1 | c & 5 2 i " - 1 c (q) (B.17a)

^ q | L2 | c & 5 i " (q0 - 1 1 q1 - 0 2 g 2 2 - 2) c (q)

and

^ q | R0 | c & 5 2 i " g ( - 0 2 q2 - 1) c (q)

^ q | R1 | c & 5 2 i " g ( - 1 2 q2 - 0) c (q) (B.17b)

^ q | R2 | c & 5 2 i " g 2 2 - 2 c (q)

for all | c & P *(3 -
1 ). Finally, note that equation (B.9) means

U ²
L(q)RaUL(q) 5 Ra, U ²

R(q)LaUR(q) 5 La (B.18)

a 5 0, 1, 2, from which

[La, Rb] 5 0 (a, b 5 0, 1, 2) (B.19)

follows. That much of the regular representation of 3 ²
1 (1, 1) is needed in

this paper.
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